Characterizing Local Best SAIN Approximations

Lee L. Keener*
Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, Nova Scotia B3H4H8, Canada

Communicated by E. W. Cheney
Received March 20, 1981

1. Introduction

Let $f \in C^{(1)}[a, b]$ and let $Z=\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}, a \leqslant z_{1}<z_{2}<\cdots<z_{k} \leqslant b$ be given. Let Π_{n-1} denote the set of algebraic polynomials of degree less than or equal to $n-1$. Let $\Pi_{n-1}(Z, f) \equiv\left\{p \in \Pi_{n-1}: p(x)=f(x) \quad \forall x \in Z\right.$, $\|p\|=\|f\|\}$, where $\|\cdot\|$ denotes the uniform norm on $[a, b]$. This set is unfortunately not in general convex. We seek to characterize those $p^{*} \in \Pi_{n-1}(Z, f)$ for which $\left\|p^{*}-f\right\| \leqslant\|p-f\|$ for all $p \in \Pi_{n-1}(Z, f) \cap N$, where N is some neighborhood of p^{*}. Such a p^{*} will be called a local best SAIN approximation. (SAIN is an acronym for "Simultaneous Approximation, Interpolation and Norm preservation.") If $\Pi_{n-1}(Z, f) \neq \varnothing$, then we can use standard compactness arguments to show the existence of at least one globally best SAIN approximation.

To avoid trivial cases we will assume without additional comment that $f \notin \Pi_{n-1}(Z, f)$, and for certain technical reasons, we will also assume that the set of zeros of f^{\prime} is composed of a finite number of (connected) components. The topology for functions is that induced by the uniform norm and the topology for point sets is the usual relative topology on $[a, b]$.

SAIN approximation was introduced by Deutsch and Morris [2] and has been subsequently studied in $[5,6,10]$. These investigations have been concerned with Jackson and Weierstrass type results and, as is pointed out by Chalmers and Taylor in their recent survey [1], no characterization results for this theory are known. In order to obtain such results, we find it useful to insist upon the conditions on f given above. Even under these restrictions the characterization theorem is exceedingly complex. The reader may wish to compare the theory that follows with that of Ross and Belford [11] concerning approximation with prescribed norm. The method of attack we use is similar to that in [9] but the details are quite different.

[^0]
2. Definitions and Notation

For $p \in \Pi_{n-1}(Z, f)$, let $e_{p}(x) \equiv p(x)-f(x)$, called the error function for the approximation. In this notation and in that which follows, we will include p as a subscript or argument for emphasis but remove it when the context is clear. Let $X_{u}(p)=\left\{x \in[a, b]: e_{p}(x)==\left\|e_{p}\right\|\right\}, \quad X_{l}(p)=\left\{x \in[a, b]: e_{p}(x)=\right.$ $\left.-\left\|e_{p}\right\|\right\}$ and $X(p)=X_{u}(p) \cup X_{l}(p)$. Let $Y_{u}(p)=\{x \in[a, b]: p(x)=\|f\|\}$, $Y_{l}(p)=\{x \in[a, b]: p(x)=-\|f\|\}$ and $Y(p)=Y_{u}(p) \cup Y_{l}(p)$. For sets of real numbers A and $B, A<B$ will mean that $a \in A, b \in B$ implies $a<b$, with a similar definition for $A \leqslant B$. Assume first that p is non-constant. Partition $(X \cup Y)-Z$ into a (finite) number of disjoint sets $\left\{W_{i}(p)\right\}_{i=1}^{m(p)}$, so that
(i) given W_{i} for any $i, z \in Z \Rightarrow W_{i}<\{z\}$ or $W_{i}>\{z\}$,
(ii) given $x \in X_{u} \cup Y_{u}$ and $y \in X_{l} \cup Y_{l}$, we must have $\{x, y\} \notin W_{i}$ for each $i=1,2, \ldots, m$,
(iii) the number of subsets in the partition is minimal (and clearly finite). This number is m.

This partitioning can be done in but one way. Note each W_{i} is closed. For $i=1,2, \ldots, m$, define $\sigma\left(W_{i}\right)=1 \quad$ if $\quad W_{i} \cap\left(X_{u} \cup Y_{u}\right) \neq \varnothing$ and define $\sigma\left(W_{i}\right)=-1$ otherwise. Let $I_{0}, I_{1}, \ldots, I_{m}$ be closed, non-singleton intervals, disjoint from $U_{i} W_{i}$, where $W_{i}<I_{i}<W_{i+1}$, for $i=1,2, \ldots, m-1$, and where $I_{0}<W_{1}$ if $a \notin W_{1}$ and $I_{m}>W_{m}$ if $b \notin W_{m} . I_{0}$ or I_{m} will be empty if $a \in W_{1}$ or $b \in W_{m}$, respectively. The other Γ 's are to be nonempty. We also require that $Z \subset \bigcup_{i=0}^{m} I_{i}$. Clearly, a collection of such I 's can be found for each p. Define G_{i} for $i=1,2, \ldots, m-1$ by

$$
\begin{aligned}
G_{i} & =\operatorname{card}(Z-Y) \cap I_{i}
\end{aligned} \quad \text { if } \operatorname{card}(Z-Y) \cap I_{i} \text { even and } \sigma\left(W_{i}\right) \sigma\left(W_{i+1}\right)=1 .
$$

Define $G_{0}=\operatorname{card}(Z-Y) \cap I_{0}$ and $G_{m}=\operatorname{card}(Z-Y) \cap I_{m}$. Exceptionally, if p is identically constant define $G_{i}=0$ for all i. Define $\gamma=2 \operatorname{card}(Z \cap Y)-\operatorname{card}(Z \cap Y \cap\{a, b\})$.

Definition. Let $y \in Y$. We say that y is buried to the right in X if there is a neighbourhood N of y such that $f(x)-\|e\| \geqslant-\|f\|$ for all $x \in N-[a, y]$ when $p(y)=-\|f\|$ or $f(x)+\|e\| \leqslant\|f\|$ for all $x \in N-[a, y]$ when $p(y)=$ $\|f\|$. (It is possible for $N-[a, y]$ to be empty.) Similarly, we say that y is buried to the left in X if there is a neighborhood N of y such that
$f(x)-\|e\| \geqslant-\|f\|$ for all $x \in N-[y, b]$ when $p(y)=-\|f\|$ or $f(x)+\|e\| \leqslant$ $\|f\|$ for all $x \in N-[y, b]$ when $p(y)=\|f\|$. If y is not buried (or unburied) to the right in X then $y \neq b$ and there is a neighborhood N of y such that $f(x)-\|e\|<-\|f\|$ or $f(x)+\|e\|>\|f\|$ for all $x \in N-|a, y|$. This is a consequence of the hypothesis on the zeros of f^{\prime}. A similar statement can be made regarding unburied to the left. If y is buried on both sides in X, we say y is buried in X. Otherwise, we say y is unburied in X. Note that if y is buried in X then $y \in X$. We say Y is buried in X if y is buried in X for each $y \in Y$.

Define $\beta(y)$ for each $y \in Y$ not buried in X as follows. If for some i, $1 \leqslant i \leqslant m-1$, we have $X \cap W_{i} \leqslant\{y\} \leqslant X \cap W_{i+1}$ and y is not buried in X on the side of y adjacent to I_{i}, then $B(y)$ is given by Table I. If for some i, $1 \leqslant i \leqslant m-1$, we have $X \cap W_{i} \leqslant\{y\} \leqslant X \cap W_{i+1}$ and y is buried in X on the side of y adjacent to I_{i}, define $\beta(y)=2$. If there exist x_{1}, x_{2} in some $X \cap W_{i}$ (where $1 \leqslant i \leqslant m$) with $x_{1}<y<x_{2}$, define $\beta(y)=2$. If $\{y\} \leqslant$ $X \cap W_{0}$ and y is unburied to the left in X or $\{y\} \geqslant X \cap W_{m}$ and y is unburied to the right in X, define $\beta(y)=1$. If $\{y\} \leqslant W_{0}$ and y is buried to the left in X or $\{y\} \geqslant W_{m}$ and y is buried to the right in X, define $\beta(y)=2$, unless $\{y\} \cap\{a\}-X \neq \varnothing$ or $\{y\} \cap\{b\}-X \neq \varnothing$, respectively, in which case define $\beta(y)=1$. Note: If $X \cap W_{i} \cap Y=\{y\}$ is a singleton, it is possible that $\beta(y)$ is ambiguously defined. In this instance we agree to define β using the smaller value.

Define α by

$$
\begin{aligned}
\alpha & =\min \{\beta(y): y \in Y, y \text { unburied in } X\} \quad \text { if } \quad Y \cap Z=\varnothing \\
& =0 \quad \text { if } \quad Y \cap Z \neq \varnothing \text { or } \mathrm{p} \text { identically constant. }
\end{aligned}
$$

After this extensive series of definitions, we are ready to present the main theorem.

TABLE I

	$\operatorname{card}(Z-Y) \cap I_{i}$	
$\left(W_{i}\right) \sigma\left(W_{i+1}\right)$	Even	Odd
1	$\beta=2$	$\beta=0$
-1	$\beta=0$	$\beta=2$

3. Characterization

Theorem 1. Assume $p^{*} \in \Pi_{n-1}(Z, f)$ and $Y\left(p^{*}\right)$ is not buried in $X\left(p^{*}\right)$. Then p^{*} is a local best SAIN approximation to f if and only if

$$
\sum_{i=0}^{m\left(p^{*}\right)} G_{i}\left(p^{*}\right)+\alpha\left(p^{*}\right)+\gamma\left(p^{*}\right) \geqslant n .
$$

Proof (Only if). Assume here and in the proof of the converse that p^{*} is non-constant. The result follows in a straightforward manner using standard techniques otherwise. Assume that $\sum_{i=0}^{m} G_{i}+\alpha+\gamma<n$. Given $\varepsilon>0$, we show how to construct a SAIN approximation \bar{p} to f such that $0<\left\|\bar{p}-p^{*}\right\|<\varepsilon$ and $\|\bar{p}-f\|<\left\|p^{*}-f\right\|$. We must consider a large number of cases and subcases. Case 1: $Y \cap Z=\varnothing$ (implying $\gamma=0$) and $\alpha=0$. From the definitions of α and β, we see that there are several ways that this situation can occur. Take, for example, the subcase where there is a $\bar{y} \in Y$, not buried to the right in X, and $i^{*}, 1 \leqslant i^{*} \leqslant m-1$, such that $\left(X_{u} \cup Y_{u}\right) \cap W_{i^{*}} \leqslant\{\bar{y}\}<I_{i^{*}}<\left(X_{l} \cup Y_{i}\right) \cap W_{i^{*}+1}$, the sets involved being nonempty, with $\operatorname{card}\left(I_{i} \cap Z\right)$ even. We may assume that \bar{y} is maximal among all points in Y satisfying these conditions (for fixed i^{*}). For each $\delta \in\left[0, d\left(Z \cap I_{i^{*}}, \bar{y}\right)\right)$, where d is the norm induced distance function between points and sets, define $q_{\delta} \in \Pi_{n-1}$ so as to satisfy the following:
(1) q_{δ} has nodal zeros at each point in Z. (See [7] for definitions of nodal and nonnodal zeros.)
(2) q_{δ} has a nodal zero at an arbitrary point in $I_{i}-Z$ provided that $1 \leqslant i \leqslant m-1, i \neq i^{*}$ and either $\operatorname{card}\left(I_{i} \cap Z\right)$ odd and $\sigma\left(W_{i}\right) \sigma\left(W_{i+1}\right)=1$ or else $\operatorname{card}\left(I_{i} \cap Z\right)$ even and $\sigma\left(W_{i}\right) \sigma\left(W_{i+1}\right)=-1$. The arbitrary points are chosen independently of δ. (One might alternatively require exactly one zero of q_{δ} in $I_{i} \cap Z$ be nonnodal if $I_{i} \cap Z \neq \varnothing$, rather than introduce the extra point.)
(3) q_{δ} has a nodal zero at $\bar{y}+\delta$.
(4) $\operatorname{sgn}\left(q_{\delta}(\hat{x})\right)=-\operatorname{sgn}(e(\hat{x}))$ for some $\hat{x} \in X$ chosen arbitrarily, and independent of δ.
(5) q_{δ} has no zeros other than the ones specified above.
(6) Additional conditions are specified on q_{δ}, given independently of δ, so that q_{δ} varies continuously with δ and so that $q_{\delta}^{\prime}(\bar{y}+\delta) \neq 0$ for all allowable δ. (This could be done by using a normalized polynomial of minimal degree or by specifying higher derivatives at one of the nodal zeros given above, such specifications being consistent with condition 4.)
We note that such a q_{δ} can be formed since the number of zero requirements counting nodal zeros once and nonnodal zeros twice, is exactly
$\sum_{i=0}^{m} G_{i}+\alpha+\gamma<n$. We form the approximation $p^{*}+\mu q_{\delta}$ for $\mu>0$. It is clear that this approximation interpolates f on Z. We wish to show that μ and $\delta>0$ can be chosen so that

$$
\begin{align*}
& \left\|p^{*}+\mu q_{\delta}\right\|=\|f\| \tag{i}\\
& \left\|\mu q_{\delta}\right\|<\varepsilon \\
& \left\|p^{*}+\mu q_{\delta}-f\right\|<\left\|p^{*}-f\right\| .
\end{align*}
$$

Note first that $\left\|p^{*}+\mu q_{0}\right\|>\|f\|$ for any $\mu>0$, since $q_{0}^{\prime}(\bar{y}) \neq 0$. Indeed the zero structure of q_{0} has been defined in such a way that $\left|\left(p^{*}+\mu q_{0}\right)(x)\right|>\|f\|$ for x in some deleted right neighborhood of \bar{y} and $\left|\left(p^{*}+\mu q_{0}\right)(x)\right|<\|f\|$ for x in some deleted left neighborhood of \bar{y}. For $\delta>0$, we may deduce from continuity considerations that there is a function $\omega:(0, \infty) \rightarrow(0, \infty)$ such that $\left\|p^{*}+\mu q_{\delta}\right\|=\|f\|$ for $\mu=\omega(\delta)$, where we remark that $\omega(\delta) \rightarrow 0$ as $\delta \rightarrow 0$. But $\left\|q_{\delta}\right\| \rightarrow\left\|q_{0}\right\|$ as $\delta \rightarrow 0$ so $\left\|\omega(\delta) q_{\delta}\right\| \rightarrow 0$ as $\delta \rightarrow 0$. Using standard arguments, one can show that the zero structure of $\omega(\delta) q_{\delta}$ is such that for any neighborhood N of $\bar{y},\left|\left(p^{*}+\omega(\delta) q_{\delta}-f\right)(x)\right|<\left\|p^{*}-f\right\|$ for $x \notin N \cap$ ($\bar{y}, b]$, provided $\left\|\omega(\delta) q_{\delta}\right\|$ is sufficiently small. But the above equality is actually true for $x \in N \cap(\bar{y}, b]$ as well, if N is chosen appropriately, since \bar{y} is unburied to the right in X. Indeed, let N be the neighbourhood whose existence is assured in the definition of \bar{y} unburied to the right in X. Then for $x \in N \cap\left(\bar{y}, b \mid\right.$, denoting $p^{*}+\omega(\delta) q_{\delta}$ by $\bar{p}, \quad \bar{p}(x) \leqslant\|f\|<f(x)+\left\|e_{p^{*}}\right\|$ implying $(\bar{p}-f)(x)<\left\|e_{p^{*}}\right\|$. Since $\bar{p}(x)-f(x)>-\left\|e_{p^{*}}\right\|$ for all $x \in|a, b|$ and $\left\|\omega(\delta) q_{\delta}\right\|$ sufficiently small, we deduce that $|\bar{p}(x)-f(x)|<\left\|e_{p^{*}}\right\|=$ $\left\|p^{*}=f\right\|$ for all $x \in N \cap(\bar{y}, b]$ and $\left\|\omega(\delta) q_{\delta}\right\|$ sufficiently small, and hence $|\bar{p}(x)-f(x)|<\left\|p^{*}-f\right\|$ for all $\left.x \in \mid a, b\right]$ and $\left\|\omega(\delta) q_{\delta}\right\|$ sufficiently small, as required. Thus conditions (i)-(iii) may be satisfied for $\mu=\omega(\delta)$ and $\delta>0$ sufficiently small. Therefore, p^{*} is not a local best SAIN approximation.

If we consider the two possible choices for $\sigma\left(W_{i^{*}}\right)$, the two possible choices for $\sigma\left(W_{i^{*}}\right) \sigma\left(W_{i^{*}+1}\right)$ (i.e., $\sigma\left(W_{i^{*}}\right) \sigma\left(W_{i^{*}+1}\right)=1$ and $\operatorname{card}\left(I_{i^{*}} \cap Z\right)$ odd or else $\sigma\left(W_{i^{*}}\right) \sigma\left(W_{i^{*}+1}\right)=-1$ and $\operatorname{card}\left(I_{i^{*}} \cap Z\right)$ even $)$, and the two possible relative locations for \bar{y} (i.e., $(X \cup Y) \cap W_{i^{*}} \leqslant\{\bar{y}\}<I_{i^{*}}$ and $I_{i^{*}}<\{\bar{y}\} \leqslant$ $\left.(X \cup Y) \cap W_{i^{*}}\right)$, it is clear that we have considered but one of a total of 8 distinct subcases of Case 1 . In fact, the construction just described handles the 4 cases where $\{\bar{y}\}<I_{i^{*}}$. By modifying condition (3) in this construction to (3^{\prime}): q_{δ} has a nodal zero at $\bar{y}-\delta$, the remaining cases are handled. We assume \bar{y} minimal rather than maximal in this situation. The proof for each subcase is similar to that of the sample subcase considered above. In each subcase, we note that \bar{y} is unburied in X on the side of \bar{y} adjacent to $I_{i^{*}}$.

Case 2. $Y \cap Z=\varnothing, \alpha=2$. This implies $\beta(y)=2$ for all $y \in Y$ not buried in X. We consider 4 subcases.

Subcase 2(a). $X \cap W_{i^{*}} \leqslant\{\bar{y}\} \leqslant X \cap W_{i^{*}+1}, \quad 1 \leqslant i^{*} \leqslant m-1, \quad \bar{y}$ not buried in X on the side of \bar{y} adjacent to $I_{i^{*}}$, and either $\sigma\left(W_{i^{*}}\right) \sigma\left(W_{i^{*}+1}\right)=1$, $\operatorname{card}\left(Z \cap I_{i^{*}}\right)$ even or else $\sigma\left(W_{i^{*}}\right) \sigma\left(W_{i^{*}+1}\right)=-1$, $\operatorname{card}\left(Z \cap I_{i^{*}}\right)$ odd. The construction here is similar to that of Case 1 except that an additional nodal zero must be specified near \bar{y} (for example, in $I_{i^{*}}-Z$). This zero does not depend on δ and is required to preserve the proper zero structure of the correction function. The proof then proceeds as in Case 1 . We assume that \bar{y} is maximal or minimal, as in Case 1 , depending on its location relative to $I_{i^{*}}$.

Subcase 2(b). $X \cap W_{i^{*}} \leqslant\{\bar{y}\} \leqslant X \cap W_{i^{*}+1}, 1 \leqslant i^{*} \leqslant m-1, \bar{y}$ buried in X on the side of \bar{y} adjacent to $I_{i^{*}}$. The construction here is again similar to that of Case 1 . A nodal zero is specified at $\bar{y}-\delta$ if $\{\bar{y}\}<I_{i^{*}}$ and at $\bar{y}+\delta$ if $\{\bar{y}\}>I_{i^{*}}$. An additional nodal zero must also be specified as follows: Assume that $\{\bar{y}\}<I_{i^{*}}$. Then there is a deleted left neighborhood of \bar{y} that fails to intersect X. If there is a deleted left neighborhood of \bar{y} that also fails to intersect Y, specify the additional nodal zero arbitrarily in this neighborhood and consider only δ 's for which $\bar{y}-\delta$ exceeds this zero. If, however, no such neighborhood can be found, then there must be a point in Y that satisfies the conditions of Subcase 2(c) given below, and for which the construction given in that subcase is applicable. A similar procedure is adopted if $\{\bar{y}\}>I_{i^{*}}$. Again, a proof similar to that of Case 1 may be used; the extra zero is specified to maintain the correct zero structure.

Subcase 2(c). There exist x_{1}, x_{2} in $X \cap W_{i^{*}}, \quad 1 \leqslant i^{*} \leqslant m$ with $x_{1}<\bar{y}<x_{2}$. Assume that \bar{y} is buried to the right in X. A similar procedure is used if \bar{y} is buried to the left. If there is a deleted left neighborhood of \bar{y} that fails to intersect Y, then the construction of Subcase 2(b) may be employed. If there are points of Y in every such neighborhood, then there is a point $\overline{\bar{y}} \in Y$, to the left of \bar{y}, with $x_{1}<\overline{\bar{y}}<x_{2}$, and contained in a neighborhood that fails to intersect X. In this situation we use a variation of the construction in Case 1, where requirement (3) is replaced by (3^{\prime}): q_{δ} has a nonnodal zero at \bar{y}. (The dependence on δ is then lost, so that requirement (6) becomes irrelevant.) Of course we may consider initially a \bar{y} with the properties of $\overline{\bar{y}}$ and the construction is as above. The proof is an easier version of those above.

Subcase 2(d). $\{\bar{y}\} \leqslant W_{0}, \quad \bar{y}$ is buried to the left in X and $\{\bar{y}\} \cap\{a\}-X=\varnothing$ or else $\{\bar{y}\} \geqslant W_{m}, \bar{y}$ is buried to the right in X and $\{\bar{y}\} \cap\{b\}-X=\varnothing$. This case is treated in a manner similar to Subcase 2(b).

Case 3. $Y \cap Z=\varnothing, \alpha=1$. This case requires examination of the situation near the endpoints and is handled using a straightforward adaptation of the constructions of Cases 1 and 2.

Case 4. $Y \cap Z \neq \varnothing$. The construction here is somewhat different. We must of necessity form $\bar{p}=p^{*}+\mu q, \mu>0$ with q having nonnodal zeros at each point in $Y \cap Z-\{a, b\}$ and nodal-zeros at each point in $Y \cap Z \cap\{a, b\}$. The additional zeros are specified as follows:
(1) q has nodal zeros at each point in $Z-Y$.
(2) q has a nodal zero at an arbitrary point in $I_{i}-Z$ provided $1 \leqslant i \leqslant m-1$ and either $\operatorname{card}\left(I_{i} \cap(Z-Y)\right)$ odd and $\sigma\left(W_{i}\right) \sigma\left(W_{i+1}\right)=1$ or else card $\left(I_{i} \cap(Z-Y)\right)$ even and $\sigma\left(W_{i}\right) \sigma\left(W_{i+1}\right)=-1$.
(3) $\operatorname{sgn}(q(\hat{x}))=-\operatorname{sgn}(e(\hat{x}))$ for some $\hat{x} \in X$ chosen arbitrarily.
(4) q has no zeros other than the ones specified above.

With this definition for q, we see, using standard arguments, that $\left\|p^{*}-f\right\|>$ $\left\|p^{*}+\mu q-f\right\|$ for sufficiently small $\mu>0$. We note that $\left\|p^{*}+\mu q\right\|=\|f\|$ for small μ is an immediate consequence of the zero structure of q and the fact that $Z \cap Y \neq \varnothing$. Since $p^{*}+\mu q$ still interpolates f on Z, we see that p^{*} cannot be locally best.

We conclude the proof of the only if portion of the theorem by noting that the pair of zeros specified near \bar{y} in Subcase 2(a) may be replaced by a nonnodal zero at \bar{y}, if \bar{y} happens not be a point in X. Also note that $\sum_{i=0}^{m} G_{i}$ represents the number of zeros required to improve the approximation while maintaining the interpolation conditions, α represents the number of additional zeros required to insure $\|\bar{p}\|=\|f\|$ and γ represents the correction necessary when higher multiplicity zeros are required for points in $Y \cap Z$.

Proof (If). Suppose $\sum_{i=0}^{m} G_{i}+\alpha+\gamma \geqslant n$ but p^{*} is not locally best. Then there is a sequence of SAIN approximations to $f,\left\langle p_{j}\right\rangle, p_{j} \rightarrow p^{*}$ with $\left\|p_{j}-f\right\|<\left\|p^{*}-f\right\|$ for all j. Let $q_{j}=p_{j}-p^{*}$. For sufficiently large j, q_{j} has a zero structure similar to one of the "improvement functions" constructed in the proof of the "only if" part of the theorem. Indeed q_{j} must have zeros at each point in Z with multiplicities of at least two at each point in $Y \cap Z-$ $\{a, b\}$. In fact since $\left\|p_{j}-f\right\|<\left\|p^{*}-f\right\|, q_{j}$ has at least $\sum_{i=1}^{m} G_{i}+\gamma$ zeros (counting multiplicities) required to improve the approximation while maintaining the interpolation conditions. From continuity considerations, there is a $\bar{y} \in Y$, unburied in X and a sequence $\left\langle\bar{y}_{j}\right\rangle$ such that $\bar{y}_{j} \rightarrow \bar{y}$ and $\left|p_{j}\left(\bar{y}_{j}\right)\right|=$ $\left|p^{*}(\bar{y})\right|=\|f\|$ for all j. By considerations similar to those in the proof of the "only if" portion of the theorem we may deduce that for sufficiently large j, q_{j} must have at least α zeros in addition to those previously counted. Thus for a sufficiently large j, call it j^{*}, q_{j}. has at least $\sum_{i=1}^{n} G_{i}+\alpha+\gamma \geqslant n$ zeros (counting multiplicities). But $q_{j} \in \Pi_{n-1}$ and so $q_{j^{\star}} \equiv 0$, a contradiction, since $\left\|p_{j^{*}}-f\right\|<\left\|p^{*}-f\right\|$ implies $q_{j} \neq 0$.

In the statement of Theorem 1, we assumed that Y was unburied in X. We now investigate the consequences of the removal of that condition.

Theorem 2. Assume $p^{*} \in \Pi_{n-1}(Z, f)$ and Y is buried in X. Then p^{*} is a local best SAIN approximation to f.

Proof. Suppose p^{*} is not locally best. Then there is a sequence of SAIN approximations $\left\langle p_{j}\right\rangle, p_{j} \rightarrow p^{*}$, such that $\left\|p_{j}-f\right\|<\left\|p^{*}-f\right\|$ for all j. As in the proof of Theorem 1 , there is a $\bar{y} \in Y$ and a sequence $\left\langle\bar{y}_{j}\right\rangle$ in $[a, b]$ for which $\bar{y}_{j} \rightarrow \bar{y}$ and $\left|p_{j}\left(\bar{y}_{j}\right)\right|=\left|p^{*}(\bar{y})\right|=\|f\|$. Since Y is buried in X, \bar{y} is buried in X. So there is a neighborhood N of \bar{y} in which $f(x)-\|e\| \geqslant-\|f\|$ for all $x \in N$ if $p^{*}(\bar{y})=-\|f\|$ or else $f(x)+\|e\| \leqslant\|f\|$ for all $x \in N$ if $p^{*}(\bar{y})=\|f\|$. Assume the latter. Let j^{*} be so large that $\bar{y}_{j}^{*} \in N$ and $p_{j^{*}}\left(\bar{y}_{j^{*}}\right)=\left|p_{j^{*}}\left(\bar{y}_{j^{*}}\right)\right|=\|f\| \geqslant f\left(\bar{y}_{j^{*}}\right)+\|e\|, \quad$ so $\quad\left|p_{j}\left(\bar{y}_{j^{*}}\right)-f\left(\bar{y}_{j^{*}}\right)\right|=p_{j^{*}}\left(\bar{y}_{j^{*}}\right)-$ $f\left(\bar{y}_{j^{*}}\right) \geqslant\|e\|$, a contradiction. The other case is handled similarly.

We may combine Theorems 1 and 2 to obtain a complete characterization of local best SAIN approximations.

Theorem 3. $p^{*} \in \Pi_{n-1}(Z, f)$ is a local best SAIN approximation to f if and only if one of the following conditions holds:
(1) Y is buried in X,
(2) $\sum_{i=0}^{m} G_{i}+\alpha+\gamma \geqslant n$.

4. Nonuniqueness

It would be very surprising in view of the local nature of the characterization theorem, the nonconvexity of $\Pi_{n-1}(Z, f)$ and the nonuniqueness results of Ross and Belford [11], to discover that (globally) best SAIN approximatons are always unique. Indeed the following simple example shows that this cannot be expected.

Example. Define f on $[0,1]$ by $f(x)=2\left(x-\frac{1}{2}\right)^{2}+\frac{1}{2}$. Let $Z=\left\{\frac{1}{2}\right\}$. It is easy to show that $\Pi_{1}(Z, f)=\left\{p_{1}, p_{2}\right\}$, where $p_{1}(x)=x$ and $p_{2}(x)=1-x$. But $\left\|p_{1}-f\right\|=\left\|p_{2}-f\right\|=1$, so there are two distinct best SAIN approximations in this instance.

5. Concluding Remarks

It would be advantageous to remove the smoothness requirement on f as well as the requirement concerning the zeros of f^{\prime}. In fact these requirements can probably be weakened or even completely removed at the expense of introducing substantial additional complications in the theory.

The theory might be widened to include Hermite-Birkhoff interpolatory
conditions or more general constraints given by linear functionals and indeed such constraints have been considered in the literature.

The characterization theorem given (Theorem 1) is not a true alternation theorem. But it is "alternation-like" in the sense that given an approximation p^{*}, one can identify certain types of points in $[a, b]$ and determine whether p^{*} is a local best approximation to f solely on the basis of the pattern that these points form in $[a, b]$.

The results in Theorems 1, 2 and 3 can be extended to certain classes of Tchebycheff space. For instance, these theorems remain valid if our original approximating family is taken to be $\mathrm{sp}\left\{e^{\lambda_{1} x}, e^{\lambda_{2} x}, \ldots, e^{\lambda_{n} x}\right\}$, where the λ_{i} 's are distinct reals. More generally, the three theorems remain true if the approximating family originates with a space spanned by an extended complete Tchebycheff system of order 2 , provided the nonconstant elements of such a space assume any given value at only a finite number of points. The reader may wish to consult $[3,4,7,8]$ for the appropriate definitions, theorems and related results.

References

1. B. L. Chalmers and G. D. Taylor, Uniform approximation with constraints, Jber. Dt. Math Verein. 81 (1979), 49-86.
2. F. Deutsch and P. D. Morris, On Simultaneous approximation and interpolation which preserves the norm, J. Approx. Theory 2 (1969), 355-373.
3. W. Haussmann, Differentiable Tchebycheff subspaces and Hermite interpolation, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 4 (1978/1979), 75-83.
4. Y. Ikebe, Hermite-Birkhoff interpolation problems in Haar subspaces, J. Approx. Theory 8 (1973), 142-149.
5. D. J. Johnson, Jackson type theorems for approximation with side conditions, J. Approx. Theory 12 (1974), 213-229.
6. D. J. JOHNSON, SAIN approximation in C[a, b], J. Approx. Theory 17 (1976), 14-34.
7. S. Karlin and W. J. Studden, "Tchebycheff Systems with Applications in Analysis and Statistics," Interscience, New York/London/Sydney, 1966.
8. L. L. Keener, Hermite-Birkhoff interpolation and approximation of a function and its derivatives, J. Approx. Theory 30 (1980), 129-138.
9. L. L. Keener, One-sided approximation with interpolation, preprint.
10. J. Lambert, Conditions for simultaneous approximation and interpolation with norm preservation in C[a,b], Pacific J. Math. 66 (1976), 173-180.
11. M. D. Ross and G. G. Belford, Characterization of best Chebyshev approximations with prescribed norm, J. Approx. Theory 16 (1976), 315-328.

[^0]: * Supported by NSERC of Canada Grant No. 8755.

